115 research outputs found

    Apraxia in progressive nonfluent aphasia

    Get PDF
    The clinical and neuroanatomical correlates of specific apraxias in neurodegenerative disease are not well understood. Here we addressed this issue in progressive nonfluent aphasia (PNFA), a canonical subtype of frontotemporal lobar degeneration that has been consistently associated with apraxia of speech (AOS) and in some cases orofacial apraxia, limb apraxia and/or parkinsonism. Sixteen patients with PNFA according to current consensus criteria were studied. Three patients had a corticobasal syndrome (CBS) and two a progressive supranuclear palsy (PSP) syndrome. Speech, orofacial and limb praxis functions were assessed using the Apraxia Battery for Adults-2 and a voxel-based morphometry (VBM) analysis was conducted on brain MRI scans from the patient cohort in order to identify neuroanatomical correlates. All patients had AOS based on reduced diadochokinetic rate, 69% of cases had an abnormal orofacial apraxia score and 44% of cases (including the three CBS cases and one case with PSP) had an abnormal limb apraxia score. Severity of orofacial apraxia (but not AOS or limb apraxia) correlated with estimated clinical disease duration. The VBM analysis identified distinct neuroanatomical bases for each form of apraxia: the severity of AOS correlated with left posterior inferior frontal lobe atrophy; orofacial apraxia with left middle frontal, premotor and supplementary motor cortical atrophy; and limb apraxia with left inferior parietal lobe atrophy. Our findings show that apraxia of various kinds can be a clinical issue in PNFA and demonstrate that specific apraxias are clinically and anatomically dissociable within this population of patients

    Ten simple rules for reporting voxel-based morphometry studies

    Get PDF
    Voxel-based morphometry [Ashburner, J. and Friston, K.J., 2000. Voxel-based morphometry—the methods. NeuroImage 11(6 Pt 1), 805–821] is a commonly used tool for studying patterns of brain change in development or disease and neuroanatomical correlates of subject characteristics. In performing a VBM study, many methodological options are available; if the study is to be easily interpretable and repeatable, the processing steps and decisions must be clearly described. Similarly, unusual methods and parameter choices should be justified in order to aid readers in judging the importance of such options or in comparing the work with other studies. This editorial suggests core principles that should be followed and information that should be included when reporting a VBM study in order to make it transparent, replicable and useful

    Language impairment in frontotemporal lobar degeneration

    Get PDF
    The term frontotemporal lobar degeneration (FTLD) describes a heterogeneous group of neurodegenerative disorders associated with frontal and temporal lobe atrophy. Within this spectrum, two progressive aphasia syndromes, progressive nonfluent aphasia (PNFA) and semantic dementia (SD), are well described. FTLD is commonly a genetic disorder and mutations in two genes, microtubule-associated protein tau (MAPT) and progranulin (GRN) account for a large proportion of familial cases. A retrospective imaging study using cortical thickness measures shows involvement of the anteroinferior temporal lobes in SD and the left inferior frontal lobe/insula in PNFA. Studies of disease severity and of longitudinal imaging reveal spread through the left hemisphere and into the right hemisphere in both groups. A genetics and heritability study shows that PNFA can be familial, although much less than the behavioural variant of FTLD, and that this is often due to mutations in GRN. Differing patterns of atrophy are shown between different genetic mutations and also between different pathologies with the same clinical syndrome. Evidence from the neurological, neuropsychological, neuroanatomical, genetic and pathological features of the nonfluent aphasias suggests that there are at least three nonfluent aphasia syndromes: a disorder with motor speech impairment with or without agrammatism, a disorder with agrammatism but no apraxia of speech (found in patients with progranulin mutations) and a disorder without agrammatism or apraxia of speech but with word-finding pauses (consistent with descriptions of logopenic/phonological aphasia and pathologically associated with Alzheimer’s disease). Studies of specific deficits (single word processing, prosody, neologistic jargon, apraxia and behavioural symptoms) in the progressive aphasias provide further insight into the disease. This thesis therefore provides neurological, neuropsychological and imaging data with related genetic and pathological information that can provide greater insights into the natural history and classification, and therefore pathophysiological basis of the neurodegenerative disorders that cause primary progressive language impairment

    Symptom-led staging for semantic and non-fluent/agrammatic variants of primary progressive aphasia. Alzheimer's & Dementia

    Get PDF
    INTRODUCTION: Here we set out to create a symptom-led staging system for the canonical semantic and non-fluent/agrammatic variants of primary progressive aphasia (PPA), which present unique diagnostic and management challenges not well captured by functional scales developed for Alzheimer’s disease and other dementias. METHODS: An international PPA caregiver cohort was surveyed on symptom development under six provisional clinical stages and feedback was analyzed using a mixed-methods sequential explanatory design. RESULTS: Both PPA syndromes were characterized by initial communication dysfunction and non-verbal behavioral changes, with increasing syndromic convergence and functional dependency at later stages. Milestone symptoms were distilled to create a prototypical progression and severity scale of functional impairment: the PPA Progression Planning Aid (“PPA-Squared”). DISCUSSION: This work introduces a symptom-led staging scheme and functional scale for semantic and non-fluent/agrammatic variants of PPA. Our findings have implications for diagnostic and care pathway guidelines, trial design, and personalized prognosis and treatment for PPA

    Ventricular volume expansion in presymptomatic genetic frontotemporal dementia

    Get PDF
    Objective: To characterize the time course of ventricular volume expansion in genetic frontotemporal dementia (FTD) and identify the onset time and rates of ventricular expansion in presymptomatic FTD mutation carriers. Methods: Participants included patients with a mutation in MAPT, PGRN, or C9orf72, or first-degree relatives of mutation carriers from the GENFI study with MRI scans at study baseline and at 1 year follow-up. Ventricular volumes were obtained from MRI scans using FreeSurfer, with manual editing of segmentation and comparison to fully automated segmentation to establish reliability. Linear mixed models were used to identify differences in ventricular volume and in expansion rates as a function of time to expected disease onset between presymptomatic carriers and noncarriers. Results: A total of 123 participants met the inclusion criteria and were included in the analysis (18 symptomatic carriers, 46 presymptomatic mutation carriers, and 56 noncarriers). Ventricular volume differences were observed 4 years prior to symptom disease onset for presymptomatic carriers compared to noncarriers. Annualized rates of ventricular volume expansion were greater in presymptomatic carriers relative to noncarriers. Importantly, time-intensive manually edited and fully automated ventricular volume resulted in similar findings. Conclusions: Ventricular volume differences are detectable in presymptomatic genetic FTD. Concordance of results from time-intensive manual editing and fully automatic segmentation approaches support its value as a measure of disease onset and progression in future studies in both presymptomatic and symptomatic genetic FTD

    Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: A GENFI study

    Get PDF
    Objective: To determine whether exosomal microRNAs (miRNAs) in cerebrospinal fluid (CSF) of patients with frontotemporal dementia (FTD) can serve as diagnostic biomarkers, we assessed miRNA expression in the Genetic Frontotemporal Dementia Initiative (GENFI) cohort and in sporadic FTD. Methods: GENFI participants were either carriers of a pathogenic mutation in progranulin, chromosome 9 open reading frame 72 or microtubule-associated protein tau or were at risk of carrying a mutation because a first-degree relative was a known symptomatic mutation carrier. Exosomes were isolated from CSF of 23 presymptomatic and 15 symptomatic mutation carriers and 11 healthy non-mutation carriers. Expression of 752 miRNAs was measured using quantitative PCR (qPCR) arrays and validated by qPCR using individual primers. MiRNAs found differentially expressed in symptomatic compared with presymptomatic mutation carriers were further evaluated in a cohort of 17 patients with sporadic FTD, 13 patients with sporadic Alzheimer's disease (AD) and 10 healthy controls (HCs) of similar age. Results: In the GENFI cohort, miR-204-5p and miR-632 were significantly decreased in symptomatic compared with presymptomatic mutation carriers. Decrease of miR-204-5p and miR-632 revealed receiver operator characteristics with an area of 0.89 (90% CI 0.79 to 0.98) and 0.81 (90% CI 0.68 to 0.93), respectively, and when combined an area of 0.93 (90% CI 0.87 to 0.99). In sporadic FTD, only miR-632 was significantly decreased compared with AD and HCs. Decrease of miR-632 revealed an area of 0.90 (90% CI 0.81 to 0.98). Conclusions: Exosomal miR-204-5p and miR-632 have potential as diagnostic biomarkers for genetic FTD and miR-632 also for sporadic FTD

    Distinct neuroanatomical correlates of neuropsychiatric symptoms in the three main forms of genetic frontotemporal dementia in the GENFI Cohort

    Get PDF
    Background: The overlap between frontotemporal dementia (FTD) and primary psychiatric disorders has been brought to light by reports of prominent neuropsychiatric symptoms (NPS) in FTD-related genetic mutations, particularly among C9orf72 and GRN carriers. It has been recently demonstrated that early neuroanatomical changes in genetic FTD may be different across the major disease-causing mutations. Objective: We aimed to identify whether NPS could be driven by distinct structural correlates. Methods: One hundred and sixty-seven mutation carriers (75 GRN, 60 C9orf72, and 32 MAPT) were included from the Genetic FTD Initiative (GENFI) study, a large international cohort of genetic FTD. Neuropsychiatric symptoms including delusions, hallucinations (visual, auditory, and tactile), depression, and anxiety were investigated using a structured interview. Voxel-based morphometry was performed to identify neuroanatomical correlates of NPS. Results: Psychotic symptoms correlated mainly with grey matter (GM) atrophy in the anterior insula, left thalamus, cerebellum, and cortical regions including frontal, parietal, and occipital lobes in GRN mutations carriers. GM atrophy in posterior structures of the default-mode network was associated with anxiety in the GRN group. Delusions in C9orf72 expansion carriers were mainly associated with left frontal cortical atrophy. Cerebellar atrophy was found to be correlated only with anxiety in C9orf72 carriers. NPS in the MAPT group were mainly associated with volume loss in the temporal lobe. Conclusion: Neuroanatomical correlates of NPS appear to be distinct across the main forms of genetic FTD. Overall, our findings support overlapping brain structural changes between FTD and primary psychiatric disorders

    Functional neuroanatomy of speech signal decoding in primary progressive aphasias

    Get PDF
    This work was supported by the Alzheimer’s Society (AS-PG-16-007), the National Institute for Health Research University College London Hospitals Biomedical Research Centre (CBRC 161), the UCL Leonard Wolfson Experimental Neurology Centre (PR/ ylr/18575), and the Economic and Social Research Council (ES/ K006711/1). Individual authors were supported by the Medical Research Council (PhD Studentship to CJDH; MRC Clinician Scientist Fellowship to JDR), the Wolfson Foundation (Clinical Research Fellowship to CRM), the National Brain AppealeFrontotemporal Dementia Research Fund (CNC), Alzheimer’s Research UK (ARTSRF2010-3 to SJC), and the Wellcome Trust (091673/Z/10/Z to JDW)
    corecore